Isolation, Characterization and Estimation of Ellagic Acid activity against Porphyromonas gingivalis Isolated from adult Periodontitis Patients in Kerbala City.

Alnasrawy, A.A. 1, Al-Khafaji, Y.A. 2, Altmimy, F.M . 3 and Alnasrawy, M.S. 4

1 Genetic Engineering and Biotechnology Institute for Postgraduate studies-Baghdad University, 2 College of Dentistry – Babylon University, 3 Ministry of Science and Technology, 4 Technical institute- Kerbala

Keywords: periodontitis, Isolation and characterization of Porphyromonas gingivalis, 16S rRNA, fimA genotyping, Ellagic acid.

Received (December 2014), Accepted (January 2015)

ABSTRACT

Periodontitis is a chronic bacterial infection affects the gingiva, periodontium connective tissues and alveolar bone, results in alveolar bone resorption, ultimately, partially or completely tooth loss, indeed, it may causes various serious systemic complications like Diabetes Mellitus, Cardiovascular disorders, Rheumatoid Arthritis, Pre-eclampsia with low birth weight and Orodigestive cancer mortality. Porphyromonas gingivalis is considered the main, foremost and strongest periodontal pathogen. Isolation, characterization and monoplex PCR of 16S rRNA and multiplex PCR of fimA geneotyping are the golden standard assays for detection of P.gingivalis in adult periodontitis patients. In the present study, Pomegranate peel Ethanol extract partially purified ellagic acid has an obvious effectiveness against oral pathogens (P. gingivalis and S. mutans) in both growth inhibition zone on solid medium and Percentage of growth reduction in a liquid medium in various concentrations with common MIC 16mg/ml.
1. INTRODUCTION

Periodontal diseases are the most common chronic bacterial infections that destroy connective tissue, periodontal ligaments and alveolar bone that surrounding the teeth, and ultimately leading to tooth loss [1]. They represent a serious oral health problem in adult populations in developing countries [2]. Worldwide, they affect about 750 million people or about 10.8% of the population as of 2010 [3], and associated with increased risk of various systemic complications including diabetes mellitus[4], cardiovascular diseases like myocardial infarction, atherosclerosis [5], rheumatoid arthritis [6], preeclampsia with low birth weight[7] and orodigestive cancer mortality [8].

Numerous bacteria are associated with the initiation and progression of periodontitis [9,] among which Porphyromonas gingivalis is considered the main, strongest, and foremost periodontal pathogen involved in onset of various form of periodontal diseases [10]. Bacterial culturing has been considered the classic diagnostic method widely used in the study of the composition of dental plaque and is still generally used as the gold or primary standard when determining the utility of a new microbial test in periodontal microbiology [11].

Different types of treatments have been accomplished to improve oral hygiene include mechanical removing plaques from all surfaces of the teeth, systemic or local use of antibiotics and antiseptics, laser removal of necrotic and granulation tissue and disinfection of periodontal pockets, use of water–powder system to mechanically remove bacteria or UV light systems for light-activated disinfection [12].

Over the years there have been many studies undertaken in different areas of the world on the bactericidal effects of pomegranates on a number of highly pathogenic and drug-resistant strains. These studies normally determine bactericidal potency of different extracts of the pomegranate plant against a range of different bacteria, utilizing disc diffusion assays or minimum inhibitory concentration (MIC). Methanol, ethanol extracts of the pomegranates fruit especially the peel exhibited the broadest antibacterial activity [13, 14]. This study was conducted to cultivation, phenotypic and molecular characterization of P. gingivalis isolated from adult periodontitis patients and In vitro estimation of inhibitory effect of pomegranate peel ethanolic extract partially purified (ellagic acid) against P. gingivalis isolate.

2. MATERIALS AND METHODS

Seventy two adult periodontitis patients aged between 20 and 60 years attending the Specialist Center of Dentistry division of periodontology and the clinics of dentistry in Kerbala governorate were included in this study during the period from September 2013 to July 2014. The permission for this study was obtained from the Ethical and Scientific Committee of the Medical Researches in Kerbala Health office.

Clinical examinations and Gingival Crevicular Fluid (GCF) sampling

Periodontitis Patients were clinically diagnosed by adentist, a full examination of the entire mouth of each patient was conducted and periodontal samples were collected. The
periodontal sites to be sampled were air-dried and isolated with cotton rolls. The supragingival plaque was first removed with a sterile Gracey curette, employed with care to avoid bleeding. A sterilized medium size (size 40, T.g., UK) two-four paper points were carefully inserted as deeply as possible into each gingival groove site (periodontal pocket) with a pocket depth (PD ≥ 5mm), and kept in place for (30-60) seconds. Then, the soaked paper points were rapidly transferred into 1.5 ml microcentrifuge Eppendorf tube contained 1 ml of sodium thioglycolate transport fluid (STTF) and subjected to the laboratory for bacterial cultivation, molecular detection and antibacterial estimation procedures.

Cultivation of *P. gingivalis*

The periodontal sample tubes were incubated vertically at 37°C for 48 hours, then, 100 μl aliquot from each periodontal sample was taken and streaked on *P. gingivalis* agar (P. GING) which is an enriched selective medium for isolation and presumptive identification of *P. gingivalis*[15]. The (P.GING) medium is locally prepared, consists of Columbia Agar Base, supplemented with Sheep blood, L-Cystein, Hemin, Vitamins K1, K3 and other requirements in table (1) which were selective agents for isolation of such fastidious, strictly anaerobic *P. gingivalis* from other periodontopathogenes.

Table1: cultural requirements of *P. gingivalis* in (P.GING) medium according to studies [15, 16].

<table>
<thead>
<tr>
<th>Compositions</th>
<th>Dosage</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbia Agar base</td>
<td>42.5 g /L.</td>
<td>(Oxoid)Basing stoke, U. K.</td>
</tr>
<tr>
<td>L-Cystein</td>
<td>1mg /ml (1g /L.)</td>
<td>(BD BBLTM).</td>
</tr>
<tr>
<td>Hemin</td>
<td>5μg /ml (5 mg /L.)</td>
<td>Sigma Chemical Co. USA</td>
</tr>
<tr>
<td>Vitamin K1, K3 (Konakion) inj.</td>
<td>1μg /ml (1mg /L.)</td>
<td>Hoffman-LaRocheLtd France</td>
</tr>
<tr>
<td>Agar Bacteriological powder</td>
<td>6.5 g./L.</td>
<td>(Oxoid)Basing stoke, U. K.</td>
</tr>
<tr>
<td>Bacitracin</td>
<td>10.0 mg/L.</td>
<td>Himedia Laboratories-India</td>
</tr>
<tr>
<td>Colistin methane sulfonate</td>
<td>15.37 mg/L.</td>
<td>Himedia Laboratories-India</td>
</tr>
<tr>
<td>Nalidixic Acid</td>
<td>15.0 mg/L.</td>
<td>Himedia Laboratories-India</td>
</tr>
<tr>
<td>Sheep Blood</td>
<td>50.0 ml/L.</td>
<td>Local sheep</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1000.0 ml</td>
<td>Local product</td>
</tr>
</tbody>
</table>

Selective medium plates were incubated in a tightly packed anaerobic atmosphere jar using gas pack (OXOID England) at 37°C for(7- 14) days [15].

In Vitro Identification of *P. gingivalis*

Identification of *P. gingivalis* species was done on the basis of the ability on anaerobic growth, having the typical colony color and morphology, Grams staining, biochemical Indole reaction (Spot Indole Test) [17]. Hemagglutination with 3% sheep erythrocytes [18] and Vancomycin sensitivity[19] as well as molecular investigation.

Molecular Detection of *P. gingivalis* by essential genes

DNA Extraction

About (2-3) characteristic grown colonies on (P. GING) medium were suspended in 500 μl of 0.9% sterile normal saline solution, Genomic DNA Mini Kit (Geneaid, Korea) was
used for DNA isolation from bacteria in accordance with the manufacturer’s instructions. Molecular detection of \(P. \textit{gingivalis} \) was performed by monoplex PCR of \(16S \text{ rRNA} \) gene amplification according to [20] and multiplex PCR of species specific \(\text{fimA} \) gene amplification according to [20, 21], Using the following amplification primers table 1 and cycling parameters (tables 2, 3).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Duplexing primers 5´- 3´</th>
<th>Product size (bp)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P. \textit{gingivalis})</td>
<td>AGG CAG CTT GCC ATA CTG CG ACT GGT AGC AAC TAC CGA TGT</td>
<td>404</td>
<td>[22]</td>
</tr>
<tr>
<td>Type I (\text{fimA})</td>
<td>CTG TGT GTT TAT GGC AAA CTT C AAC CCC GCT CCC TGT ATT CCG A</td>
<td>392</td>
<td>[23]</td>
</tr>
<tr>
<td>Type II (\text{fimA})</td>
<td>ACA ACT ATA CAT ATG ACA ATG G AAC CCC GCT CCC TGT ATT CCG A</td>
<td>257</td>
<td>[23]</td>
</tr>
<tr>
<td>Type III (\text{fimA})</td>
<td>ATT ACA CCT ACA CAG GTG AGG C AAC CCC GCT CCC TGT ATT CCG A</td>
<td>247</td>
<td>[23]</td>
</tr>
<tr>
<td>Type IV (\text{fimA})</td>
<td>CTA TTC AGG TGC TAT TAC CCA A AAC CCC GCT CCC TGT ATT CCG A</td>
<td>251</td>
<td>[23]</td>
</tr>
<tr>
<td>Type V (\text{fimA})</td>
<td>AAC AAC AGT CTC CTT GAC AGT G TAT TGG GGG TCG AAC GGT CTG TC</td>
<td>462</td>
<td>[24]</td>
</tr>
</tbody>
</table>

Amplification Reaction programs

Table 2: Cycling parameters for monoplex PCR of \(16S \text{ rRNA} \) gene amplification

<table>
<thead>
<tr>
<th>No. of cycles</th>
<th>Stage</th>
<th>Temperature °C</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial denaturation</td>
<td>95</td>
<td>5 min.</td>
</tr>
<tr>
<td></td>
<td>Denaturation</td>
<td>94</td>
<td>30 Sec.</td>
</tr>
<tr>
<td>35</td>
<td>Annealing</td>
<td>60</td>
<td>30 Sec.</td>
</tr>
<tr>
<td></td>
<td>Elongation</td>
<td>72</td>
<td>1 min.</td>
</tr>
<tr>
<td>1</td>
<td>Final extension</td>
<td>72</td>
<td>10 min.</td>
</tr>
</tbody>
</table>

Table 3: Cycling parameters for Multiplex PCR of species specific \(\text{fimA} \) gene amplification

<table>
<thead>
<tr>
<th>No. of cycles</th>
<th>Stage</th>
<th>Temperature °C</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Initial denaturation</td>
<td>95</td>
<td>5 min.</td>
</tr>
<tr>
<td></td>
<td>Denaturation</td>
<td>94</td>
<td>30 Sec.</td>
</tr>
<tr>
<td>35</td>
<td>Annealing</td>
<td>58</td>
<td>30 Sec.</td>
</tr>
<tr>
<td></td>
<td>Elongation</td>
<td>72</td>
<td>30 Sec.</td>
</tr>
<tr>
<td>1</td>
<td>Final extension</td>
<td>72</td>
<td>7 min.</td>
</tr>
</tbody>
</table>

Agarose Gel Electrophoresis

Agarose gel electrophoresis (1%) of PCR products was accomplished with the use of two types of DNA ladder (Accu Ladder 100 bp, Bioneer/Korea) and (50 bp DNA Step Ladder, Promega/USA).
Antibacterial activity of Ellagic acid against *P. gingivalis*
Preparation of Ellagic acid powder from Pomegranate fruits
Pomegranate peel ethanol extract partially purified (ellagic acid) was prepared according to ethanol extraction method [25, 26]. High performance liquid chromatography (HPLC) assay was used to determine the ellagic acid content in ethanol extracted powder and compared with the standard ellagic acid for Sigma chemical co. products of USA.

Preparation of Ellagic acid solution
Ellagic acid powder was dissolved in double distilled water to prepare the low concentrations of two fold serial dilutions of (32, 16, 8, 4, 2, 1, 0.5) mg/ml. These solutions were sterilized by filtration through a 0.45 μm sterilizing Millipore express filter (Biotech Germany) to be ready for antibacterial activity.

Test Microorganisms
The bacterial strains were used in the present experiments were cultivated, confirmatory diagnosed *P. gingivalis* as well as related *Streptococcus mutans* isolated from adult periodontitis patients indeed, *Escherichia coli* American type culture collection (ATCC®) 51813™, *Staphylococcus aureus* ATCC® 6538™ which maintained in central public health laboratory in Kerbala governorate microbank™ vials at −70°C that used as additional test and control strains.

Antibacterial Activity of ellagic acid in vitro Experiments
The antibacterial activity of partially purified ellagic acid against *P. gingivalis* and test microorganisms was evaluated according to the following two methods:-
1- *In vitro* growth inhibition zone on solid (brain heart infusion agar) medium, according to agar well diffusion assay [27].
2- The percentage of growth reduction in a liquid (brain heart infusion broth) medium according to a comparative study [28].

Statistical Analysis:
Differences between means of data were compared by least significant difference (LSD) calculated using the Statistical Analysis System (S.A.S., Institute, Inc. Cary, NC, USA). Collected data were analyzed by using the available statistical system package of SPSS-18 (PASW statistical). Statistical analysis was done by using Chi-Square (χ^2) test, Z test when applicable. P-value of ≤ 0.05.

3. Results and Discussion
Paper point sampling of (GCF) used for obtaining the predominant periodontal pathogen (*P. gingivalis*) because of its ability to persist and accumulate in the subgingival region, gingival pocket of chronic periodontitis patients [29] and the inflammatory exudate (GCF) is a rich source of essential nutrients for *P. gingivalis*, such as peptides and hemin-derived iron [30]. This technique was agreed with the most researches for *p. gingivalis* and other periodontal pathogenes sampling for molecular and microbiological detection [31].

Cultivation is the golden standard assay in microbiological detection of red complex periodontopathogens, although it possesses many drawbacks and difficulties, its time consuming, it has an expensive growth requirements, strict anaerobic growth conditions and
target microorganisms must survive during sampling, transportation and stay vital in order to be colonize, forming characteristic growth colony [11] as demonstrated in comparative study[32].

Figure 1: Colombia Blood Agar with characteristic black pigmented at the center of the colonies observed due to the aggregation of heme/iron on *P. gingivalis* cell walls.

Microscopic Examination and Biochemical Tests:-

The Gram's stain reaction of grown colonies revealed Gram negative coccobacilli, in some cases appeared as diplococci surrounded with a capsule or hallow as demonstrated in comparative study [33], as shown in figure (2).

Figure 2: Gram negative coccobacilli, diplococci of *P. gingivalis* with a magnitude 100X.

Indole Reaction of *P. gingivalis* was Positive due to a blue to blue-green color appeared on a filter paper (within 30s) this is agree with another study [17]. Positive hemagglutination with 3% sheep RBCs indicates the presence of peritrichous fimbriae (fimbrillin) protein which is a main, strongest and foremost virulence factor and characteristic property for fimbriated *P. gingivalis* isolate [10] as shown in figure (3).
Figure 3: demonstrated positive haemagglutination reaction of fimbriated *P. gingivalis* (net shape), negative control appeared (dot shape).

Vancomycin sensitivity test revealed that vancomycin had 100% activity against *P. gingivalis*, and it’s a characteristic feature for *in vivo* and *in vitro* characterization of this bacterium as demonstrated in figure (4), this has an agreement with other studies [16, 33].

Figure 4: positive result of vancomycin sensitivity test for *P. gingivalis* with inhibition zone 16mm according to two studies [16, 33].

Molecular Detection of *P. gingivalis* by essential genes

In the present study, molecular detection of bacterial colonies of *P. gingivalis* by essential genes revealed positive result with 16S rRNA genotype with a single band of a lane 404 bp. as demonstrated in figure (5).
Figure 5: positive result of periodontal samples (1, 2, 3, 4, 5) with 16SrRNA gene with a single band of a lane (404) bp.

As well as positive result with Species Specific fimA genotypes (Ι, ΙΙ, ΙΙΙ, ΙV, V) that demonstrated as a single band for each detected alleles (figure 6); these results have an agreement with worldwide various clinical, epidemiological and molecular studies for screening and detection of P. gingivalis in periodontal samples of adults chronic periodontitis patients [2, 34, 35, 36].

Figure 6: positive periodontal samples of fimA genotypes with lengths: sample (1) fimA genotype (ΙΙΙ) 247 bp., sample (2, 3) fimA genotypes (ΙV) 251bp., and fimA genotypes (Ι) 392 bp., sample (4) fimA genotype (ΙΙ) 257 bp. Sample (5) fimA genotype (V) 462 bp.
High performance liquid chromatography (HPLC) assay demonstrated an approximately analytical curves to both present ethanol extract and original ellagic acid of (Sigma chemical co./USA), this result has an agreement with previous studies for preparation and determination of ellagic acid in pomegranate peel ethanol extract powder [25, 37] as demonstrated in figure (7).

Figure 7: High performance liquid chromatography of (a) standard ellagic acid of Sigma chemical co. products USA, (b) prepared ellagic acid.

Antimicrobial Activity of ellagic acid in vitro Experiments

The use of plants with preventive and therapeutic effects contributes to health care needs [38]. There are three main reasons to be interested in the treating and healing power of plant extract. First, pharmacological studies have demonstrated that many of plants are known to possess antimicrobial agents; second, people are becoming aware of the side effects associated with the over prescription of traditional antibiotics; third, time to time resistant microorganisms against antibiotics are increasing [39, 40]. Among these plants, *Punica granatum* has an important role in folk medicine. Pomegranate is known as a rich source of pharmacological properties which have been evaluated due to antiparasitic, antibacterial, antifungal, antiproliferative, apoptotic and anti-cancer effects as well as protection against herpes virus, inhibition of low density lipids (LDL) oxidation and decrease in atheromatous plaque formation and reduction of systolic blood pressure [40, 41].

In the present study, the ethanol extract of *Punica granatum* peel have an effect on tested microorganisms in many concentrations.

The first method an in vitro growth inhibition zone on brain heart infusion agar medium displayed gradually increasing of growth inhibition zone of *P. gingivalis* and other related test organisms with the elevation of ellagic acid concentrations as demonstrated in table (4).
Table 4: Pomegranate peel ethanol extract (ellagic acid) activity against *P. gingivalis* and other test organisms on brain heart infusion agar.

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>Ellagic acid concentrations (mg/ml)</th>
<th>Zones of inhibition/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32 16 8 4 2 1 0.5 control</td>
<td></td>
</tr>
<tr>
<td>P. gingivalis</td>
<td>33 28 23 17 8 6 0 0</td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>32 24 20 17 8 6 0 0</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>32 26 21 18 9 5 0 0</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>30 25 20 15 7 5 0 0</td>
<td></td>
</tr>
</tbody>
</table>

In the second method (growth reduction in a liquid medium) displayed an obvious effectiveness of pomegranate peel ethanol extract ellagic acid with all concentrations against *P. gingivalis*, conventionally related *Streptococcus mutans* as well as other test microorganisms with common MIC (Minimum Inhibitory Concentration) 16 mg/ml for all the tested bacteria table (5).

Table 5: Pomegranate peel ethanol extract (ellagic acid) activity against *P. gingivalis* and other test organisms in brain heart infusion broth.

<table>
<thead>
<tr>
<th>Bacterial species</th>
<th>Ellagic acid concentrations (mg/ml)</th>
<th>Bacterial Growth Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32 16 8 4 2 1 0.5 Control</td>
<td></td>
</tr>
<tr>
<td>P. gingivalis</td>
<td>100 100 91.666 83.333 66.666 16.666 5.555 0</td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>100 100 88.636 81.818 56.818 29.545 4.545 0</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>100 100 90.909 78.787 45.454 24.242 2.272 0</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>100 100 92.307 73.076 42.307 15.384 7.692 0</td>
<td></td>
</tr>
</tbody>
</table>

These results were agreed with several clinical studies about (Reductions in Oral Bacteria) suggested a role for pomegranate extracts in reducing and preventing pathogenic dental bacteria and reducing the risk of plaque, gingivitis, and periodontal disease, all concentrations of the pomegranate extract had antibacterial activity against periodontal pathogens and the effects of three different concentrations of a methanolic pomegranate peel extract at 4mg/mL, 8mg/mL, and 12mg/mL on the growth of dental bacteria were highly effective using the disc diffusion method [44]. In other similar *in vitro* studies, ethanol and water extracts of pomegranate both had inhibitory effects against *S. mutans* and *P. gingivalis* [44, 45, 46, 47].
Various studies showed that pomegranate methanol, ethanol extracts were effective against many common oral pathogens such as \textit{Streptococcus mutans} [37]. It is demonstrated that this antibacterial activity may be related to the presence of hydrolysable tannins and polyphenolics in the pomegranate extract specifically punicalagin, ellagic acid and gallagic acid, the real mechanism of the antimicrobial effect of tannins (the major components of \textit{Punica granatum} extract) may be related to their toxicity, astringent, molecular structure or other ways. Tannins may act on the cell wall and across the cell membrane because they can precipitate proteins [40, 42, 43]. They may also suppress many enzymes such as glycosyltransferases [43]. Other studies [40, 41] demonstrated that ellagic acid (tannic acid) has the highest antibacterial effect against tested sensitive strains even at low concentrations. Hence, the antibacterial activity of \textit{Punica granatum} may be related to polyphenol structures because polyphenols may affect the bacterial cell wall, inhibit enzymes by oxidized agents, interact with proteins and disturb co-aggregation of microorganisms [40, 43].

CONCLUSION

Cultivation, characterization and Molecular Detection of \textit{P. gingivalis} using \textit{16S} rRNA, species specific \textit{fimA} genes are the golden standard assays in molecular and microbiological detection of periodontopathogens. Ethanol extract partially purified ellagic acid of pomegranate peel has an obvious effectiveness against oral pathogens (\textit{P. gingivalis} and \textit{S. mutans}) in both solid and liquid media in various concentrations with common MIC 16mg/ml, and might be used in the control (prevention and treatment) of common oral pathogens responsible for adult chronic periodontal diseases.

ACKNOWLEDGEMENTS

Authors are great thankful to Assist prof. Dr. Hassan A. A., Assist prof. Dr. Muhanad Muhsin Ahmed, Dr. Al aamiri Ali Mansoor and Dr. Fatima Malik for sharing their knowledge and facilities and to all who participates in this work.

REFERENCES

